Temperature effect on the build-up of exponentially growing polyelectrolyte multilayers. An exponential-to-linear transition point.
نویسندگان
چکیده
In this study, the effect of temperature on the build-up of exponentially growing polyelectrolyte multilayer films was investigated. It aims at understanding the multilayer growth mechanism as crucially important for the fabrication of tailor-made multilayer films. Model poly(L-lysine)/hyaluronic acid (PLL/HA) multilayers were assembled in the temperature range of 25-85 °C by layer-by-layer deposition using a dipping method. The film growth switches from the exponential to the linear regime at the transition point as a result of limited polymer diffusion into the film. With the increase of the build-up temperature the film growth rate is enhanced in both regimes; the position of the transition point shifts to a higher number of deposition steps confirming the diffusion-mediated growth mechanism. Not only the faster polymer diffusion into the film but also more porous/permeable film structure are responsible for faster film growth at higher preparation temperature. The latter mechanism is assumed from analysis of the film growth rate upon switching of the preparation temperature during the film growth. Interestingly, the as-prepared films are equilibrated and remain intact (no swelling or shrinking) during temperature variation in the range of 25-45 °C. The average activation energy for complexation between PLL and HA in the multilayers calculated from the Arrhenius plot has been found to be about 0.3 kJ mol(-1) for monomers of PLL. Finally, the following processes known to be dependent on temperature are discussed with respect to the multilayer growth: (i) polymer diffusion, (ii) polymer conformational changes, and (iii) inter-polymer interactions.
منابع مشابه
Polyelectrolyte Multilayers on Magnetic Silica as a New Sorbent for the Separation of Trace Silver in the Leaching Solutions of Antibacterial Products and Determination by Flame Atomic Absorption Spectrometry
A novel, magnetic silica sorbent with polyelectrolyte multilayers (PEMs) on its surface was prepared, and was used for Magnetic Solid Phase Extraction (MSPE) of trace A+ via Flame Atomic Absorption Spectrometry (FAAS). The experimental parameters for the MSPE procedure, such as the pH, type, and concentration of eluent, ultrasonic time and effects of co-existing ions wer...
متن کاملTemperature responsive behavior of polymer brush/polyelectrolyte multilayer composites.
The complex interaction of polyelectrolyte multilayers (PEMs) physisorbed onto end-grafted polymer brushes with focus on the temperature-responsive behavior of the system is addressed in this work. The investigated brush/multilayer composite consists of a poly(styrene sulfonate)/poly(diallyldimethylammonium chloride) (PSS/PDADMAC) multilayer deposited onto the poly(N-isopropylacrylamide-b-dimet...
متن کاملEffect of Exponentially Variable Viscosity and Permeability on Blasius Flow of Carreau Nano Fluid over an Electromagnetic Plate through a Porous Medium
The present investigation draws scholars' attention to the effect of exponential variable viscosity modeled by Vogel and variable permeability on stagnation point flow of Carreau Nanofluid over an electromagnetic plate through a porous medium. Brownian motion and thermophoretic diffusion mechanism are taken into consideration. An efficient fourth-order RK method along with shooting technique ar...
متن کاملMechanically Responding Functionalized Polyelectrolyte Multilayer Films
The alternate deposition of polyanions and polycations on charged surfaces leads to the formation of nanostructured films called polyelectrolyte multilayers [1,2,3]. The layer by layer deposition process of polyelectrolytes is used to design films equipped by compartments containing "free" polymers or biomolecules [4-6]. Each compartment corresponds to a stratum of an exponentially growing poly...
متن کاملMechanically responding nanovalves based on polyelectrolyte multilayers.
The alternate deposition of exponentially and linearly growing polyelectrolyte multilayers leads to the formation of multicompartment films. In this study, a new system consisting in nanometer-sized multilayer barriers deposited on or between multilayer compartments was designed to respond to mechanical stimuli and to act as nanovalves. The diffusion of polyelectrolytes through the barrier from...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 18 11 شماره
صفحات -
تاریخ انتشار 2016